Syntax-Augmented Machine Translation using Syntax-Label Clustering

نویسندگان

  • Hideya Mino
  • Taro Watanabe
  • Eiichiro Sumita
چکیده

Recently, syntactic information has helped significantly to improve statistical machine translation. However, the use of syntactic information may have a negative impact on the speed of translation because of the large number of rules, especially when syntax labels are projected from a parser in syntax-augmented machine translation. In this paper, we propose a syntax-label clustering method that uses an exchange algorithm in which syntax labels are clustered together to reduce the number of rules. The proposed method achieves clustering by directly maximizing the likelihood of synchronous rules, whereas previous work considered only the similarity of probabilistic distributions of labels. We tested the proposed method on Japanese-English and Chinese-English translation tasks and found order-of-magnitude higher clustering speeds for reducing labels and gains in translation quality compared with previous clustering method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مدل ترجمه عبارت-مرزی با استفاده از برچسب‌های کم‌عمق نحوی

Phrase-boundary model for statistical machine translation labels the rules with classes of boundary words on the target side phrases of training corpus. In this paper, we extend the phrase-boundary model using shallow syntactic labels including POS tags and chunk labels. With the priority of chunk labels, the proposed model names non-terminals with shallow syntactic labels on the boundaries of ...

متن کامل

The CMU syntax-augmented machine translation system: SAMT on Hadoop with n-best alignments

We present the CMU Syntax Augmented Machine Translation System that was used in the IWSLT-08 evaluation campaign. We participated in the Full-BTEC data track for Chinese-English translation, focusing on transcript translation. For this year’s evaluation, we ported the Syntax AugmentedMT toolkit [1] to the HadoopMapReduce [2] parallel processing architecture, allowing us to efficiently run exper...

متن کامل

The Syntax Augmented MT (SAMT) System at the Shared Task for the 2007 ACL Workshop on Statistical Machine Translation

We describe the CMU-UKA Syntax Augmented Machine Translation system ‘SAMT’ used for the shared task “Machine Translation for European Languages” at the ACL 2007 Workshop on Statistical Machine Translation. Following an overview of syntax augmented machine translation, we describe parameters for components in our open-source SAMT toolkit that were used to generate translation results for the Spa...

متن کامل

The Syntax Augmented MT (SAMT) System for the Shared Task in the 2007 ACL Workshop on Statistical Machine Translation

We describe the CMU-UKA Syntax Augmented Machine Translation system ‘SAMT’ used for the shared task “Machine Translation for European Languages” at the ACL 2007 Workshop on Statistical Machine Translation. Following an overview of syntax augmented machine translation, we describe parameters for components in our open-source SAMT toolkit that were used to generate translation results for the Spa...

متن کامل

Inductive Detection of Language Features via Clustering Minimal Pairs: Toward Feature-Rich Grammars in Machine Translation

Syntax-based Machine Translation systems have recently become a focus of research with much hope that they will outperform traditional Phrase-Based Statistical Machine Translation (PBSMT). Toward this goal, we present a method for analyzing the morphosyntactic content of language from an Elicitation Corpus such as the one available in the LDC’s LCTL language packs. The presented method discover...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014